
“f ., “1

. . .

. . Discrete Recurrent Neural Networks
for Grammatical Inference

Zheng Zeng, Rodney M. Goodman
Department of Electrical Engineering, 116-81

California Institute of Technology
Pasadena, CA 91125

Padhraic Smyth
Jet Propulsion Laboratory, 238-420
California Institute of !kchnology

4800 oak Grove Driw
Pasadena, CA 91109

Abst rac t

Recurrent neura]  networks have rxxcnt]y becII shown to have the ability  to learn
regular and context-free gralnmam  froni  examples. We stlow that wllilc  conventional
analog recurrent networks try to fornl clusters in activation space to represent discrete
states of the grammars during learning, (‘Itld can be sllccessful  in doing so, the clusters
so formed tend  to become unstable as longer and longer tm~ input  strings are pre-
sented to the network. In this paper, by cliscretizing  both the internal fcedbac!i  signals
and the external stack, we propose a new method to force recurrent networks to learn
stable states. For training such discrete networks we propose a ])s(:~l(lo-gradi(:llt  learn-
ing rule. The  essence of the learning rule is that in doing gradient descent it makes
use of the gradients of a sigmoid  function iis heuristic hints in place of t}losc of the
hard-limiting function, while still using the discretized values in the feedback update
path and in the operations on the external stack. The new network structure uses iso-
lated discrete points instead of “ cluster clouds” as its internal representation of states
in activation space. It is shown to have similar capabilities in learning regular and
context-free grammars as the conventional analog recurrent nctwor]i, but without the
instability problem. The proposed l)s{:(l(lo-gri~clicl]t  learning  rule may also be used as a
basis for training other types of I]ctworlis which hi~v~  hard-limiting threshold activation
functions.

1 Introduction

Recurrent neural networks have rrxc[)tly  lxx~II  investigated ill terms of tllcir ability for learn-

ing  simple grammars [2, 4, 5, (i. 8, ]0, 11, 12, 15]. II I

I

addition, partic(llar types of recurrmt
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networks have been shown to have the ability to learn context-free grammars by using an

external “continuous stack” [3]. A variety of different network architectures and learning

rules have been proposed. In general, each has been shown empirically to have the capabil-
. .

ity to learn different types of simple grammars from examples. in this paper, we consider

the “second-order” recurrent network structur-c proposed by Giles  et al. in [8] -- henceforth,

this particular model is referred to as the analog second-order network.

A typical analog second-order network is shown in Fig,  1. We have found that higher

order networks are particularly adept at learning grammars whwl  compared to the simple

recurrent network structure (also known as the ]31man structure [4, 5]) which do not use

product units –- this confirms earlier work reported in [8].

Wc have also found that in learning a rcgu]ar  grammar, the analog second-order network

attempts to form clusters of points in hidden unit activation space as its representation of the

states of the grammar. Once formed, tllesc  clusters are stable for short strings  (strings with

lengths not much longer than the maximuln length  of tr.airlillg strings) in the sellsc  that the

hidden unit activations move from one distinct cluster to another as the network follows a

trajectory in hidden unit space. IIowever,  it was found that, l’or nlost, of the learned networks,

when sufficiently long  strings are presented for testing, the lliddcn  unit activations start to

converge to a single cluster and the original clusters ultimately beco]nc indistinguishable[  16].

Similar behavior of recurrent networks }vith  differmit  str-uct  l]rm Ilas bccIl founcl  in different,

contexts[13,  11].
.

As a typical example of such behavior. l“ig. 2(a)-(c) s]lo;v  Llle evolution of hidden unit,

activations (by way of two dimensional cross-section plots for a particular analog seconcl-

order network) during  the learning phase I’or ‘1’omits Grammar #1 (tl~e ‘1’olnita gralnmar is a,

commonly used grammar in learning tests). ‘[’his learning expcrinlent  consisted of a network

with 4 hidden units being trained on a data set O( 100 labeled (and rando]llly  choscm) strings

with maximum length 15. So is the “indicator” unit, whose desired activatioJl  is close  to 1

at the end of legal strings, and 0 ot,llcrwise. ‘1’llc forrrlatiorl  of clusters of points as learning

proceeds can clearly be seen. ‘The subsequc[lt  extraction of equi  valcnt  finite state machines

(by means of clustering methods described ill [S, 16]) demonstrates that these clusters indeed

correspond to the network’s internal state representation.

The stability problem emerges as the Iletwork  is prmvlted  witl~ s tr ings much longer

than the maximum length of training stri[lgs.  P’ig. 2(f) is it plot  of tile same (’.1’0ss section

of hidden unit  act ivat ion space of  t i le  t,raill(~(l  ]lot,wo~li”  IVl)(JII IIIIlalJ(~l(Kl  strings  i~s long as

length 50 are processed for testing. ‘J’]]c i]lit,ially }v(;ll-s(:[~tlr:]l,(~(]  clllst,ers (! Velltllally  become

indistinguishable. It is clear tl~at even ll)ougll  Ll)e uctwork is successf~ll  ill fornling c.lusters as

i t s  s t a t e  reprcsclltation  during  traillillg,  it offj(’ll  I]as (Iillic[llty  ill (’r(’atillg  s/uljlc (lllst,(:rs,  i.(;.,



!., ‘[

.8
in forming clusters such that the activation points for long  strings converge to tile centers

of each cluster, instead of diverging as observed in our experiments. ‘l’he problem can be

considered as inherent to the internal representation of a network which uses analog values

to represent states, while the states  in the underlying state machine are actually cliscretc.

To achieve stability for long strings, we propose a discrete recurrent network structure

which uses discretization  in its feedback links. A pseudo-gradient training method is used to

train the network. For context-free granmnars, we use the same structure with an external

discrete stack. In the proposed network, instead of clusters, the states of the network consist

of isolated points in hidden unit activation space, Hence, once formed, the internal state

representation is stable in a manner independent of string length.

The remaining part of the paper is organized as follows: Section 2 introduces the basic

structure of second-order discrete recurrent networks, and Section 3 discusses the pseudo-

.gradient  training method. Section 4 describes experimental results in learning regular gram-

mars using the discrete recurrent network structure. Section 5 introduces discrctc recurrent

networks which use external stacks, and tile pseudo-gradient traillillg algorithm necessary

for such models. Section 6 presents experimental results in ]carning context-free grammars

using the discrete stack model. Section 7 is a brief discussion ancl Scctioll  8 concludes

paper.

2 Basic Structure of Discrete Recurrent Networks

the

A discrete recurrent network can be constructed by sinlply  taking all a[)alog  rccurrcnt  net-

work and adding threshold units to all tllc feedback links. II) the case of second-order

ne tworks ,  one  can represent the str~lct,l[rc as two scparat.  c [Ictworks  colltroll(xl  by a gating

switch (lJig. 3) as follows: the [Ietwork  co[lsists  of two 1st order r]ct,works  with shard llicldcI]

units .  The colnmon  hidden unit values arc discrctizcd  and  copied lNLck to both  netO a]ld

netl after each time step, and the input  stream acts like a switcl]iug  control  to enable or

disable one of the two “subnetworks. ” Iror example, when the currx~llt  input  is O, net O is

enabled while netl  is disabled. ‘1’hc hidden ul~it  values arc tllerl (Iccidcd  by the hicldcn  unit,

values from the previous time step weightccl  by t}lc wciglltjs  in netO. ‘1’hc hidden unit acti-

vation function is the standard sigmoid  fullction,  ~(:r)  = &_Y. ‘1’l}c discretizatioll  function

is defined to be:

(1)

‘1’hc values 0.2 and 0.8 arc chosen instead of () and 1 l]cN: ill order to give SO1]IC power of

in fluel)ce  to each of the currcl]t  hiddm ullil  valllm  over L]](I  Ilest Lil]lc s1,cI). ii ul~it, wit}l  value

:1
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0 would eliminate any influence of that unit over  the next  time step. ‘1’his  is the general

network structure which was used in our first set of experiments.

Note that this representation of a 2nd-order network, as t~vo subnetworks  with a gating,,
function, provides insight into the nature of 21)d-orcler  net}vor]is in general, i.e., clear] y they

have greater representational power than a single simple recurrent nctworli,  given the same

number of hidden units.

We use h: to denote the analog value of hidden unit i at time step t, and S’; to denote

the discretized  value of hidden unit z at time step t. w; is the weight from layer 1, unit j to

layer 2, unit i in netn. n = () or 1 in the case  Of binary inputs . I-Iidden unit lt~ is chosen to

be a special indicator unit whose activation should be greater than 0.5 at the end of a legal

string, or smaller than 0,5 otherwise. At time t = O, initialize S: to bc 0.8 ar~cl all other

s’~’s to be 0.2, i.e., assume that the null string is a legal string. The llCt\VOYli  weights are

initialized randomly with a uniform distribution between -1 and 1.

One intui t ive suggest ion to fix the stability probleln  is to replace the: aIlalog  sigmoicl

activation function in each of t}le  hidden  units with the thresho)cl  function of Equation ( 1).

In this manner, once the networli  is trairlecf,  its representation of states (i.e.. activation

pattern of hidden units) will be stable and the activation points  won’t diverge from these

state representations once they are formed. However, there is no ]illOWIl  mctllod  to train

such a network, since one can not take the gradient of such activation functions.

An alternative approach would be to train t!lc original analog secon(l-order ]lctworii  as

usual ,  but  to  add the discretizaiion  fullc!ioll  D(x)  in the [ewllmcli  Iirllis  duril~g testil)g. T h e

probleln  with this method is that one dots uot  lillOW u prifwi  where the formed  dushm froln

training will be. Hence, one does not have  good discrctization  values to thrcsl]old  the analog

values in order for the discretized activations to lx: reset 10 a cl~lsfer  cclltcr. Expcrimcmtal

results have confirmed this prcdictiol]. For c.xamplc,  after  adding  the discrctization,  t h e

modified network can not even correctly classily tllc  training set  which it has successfully

learned in training. This was verified usillg  tile  ‘l”on]ita  gralnmar  described earlier: after

training, and without the discretization,  ttlc  ]](!~t~()~li’s classification rate on the trail)ing  set

was 100’%0, while with the discretizatioll  addc[l  the ra~e bccarnc  &5%. h’or test sets of longer

strings the rates with discretization  were CVC]I worse.

We propose that the discretization  be incllltlc(] duri)lg  Loin trai]lil)g  and testing llsil]g the

formulae below. Note that from the for[tlula(  OIIC CaLI c.lcar]y SW: that in opcrafiolla]  mode,

i.e. when testing, the networ]i is ctluivalclll  (o a ll(:iworli witl~ discretizatio[l  ol]ly:

h: = j(~ 10$5’ ;-1 ), Vi,l,
~

I
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s: =  D(h:), where  D(x) =

. .
=$’ s: = I)( f(~ 20$s;-’)  )

j

(Here x’ is the input bit at time step t.)

Hence, the sigmoid units can be eliminated during  testing to simplify computation.

During training, however, the graclient  of the soft sigmoid ful]ction  is made use of in a

pseudo-gradient method for updating the weights. l’hc next section explains the method in

more detail.

By adding this discretization into the network, one might argue that the capacity of the

net is greatly reduced, since each unit can now take on only 2 distinct values. as opposecl  to

infinitely many values (at least in theory) ill the case of the undiscretizcd  (analog) networks.

However, in the case of learning discrete state machines, the arg~llncllt  depends on tile defi-

nition of the capacity of the analog network. Since in our experiments in [16], 14 out of 15 of

the learned networks had unstable behavior for nolltrivial  long strings, it is difficult to define

what capacity means for such unstable networks. Hence. a l t hough  in lheory a discretized

network (as proposed here) may have a lower capacity than a stable analog network, a stable

discretized  network may be more preferable than an ullstahle  a[lalog  network irrdcpcndcnt,

of their respective capacities.

3 The Pseudo-Gradient Learning Method

The quest ion now remains as to how to lfraill  the discretimd  rlctworks  l)roposed  irl tllc  last

section. To this end we propose an approxilnation  to gradient  dcsccnt  which wc call the

pseudo-gradient learning rule. During training, at the end of each strillg {x”, x], ,... :Cf’}  the

mean squared error is calculated as follows (note  that L is tile string Icllgtll an(l that h; is

the analog indicator value at the end of the string):

E = ;(/$ – 7’)2, ‘U)ht!?’c ‘1’ = lal’(Jei  =
{

I if “legal”
O if “illegal’).

Update w;, the weight froln  unit j to ullit  i ill net~~, at tllc  t:]]d of(:a(ll  slrillg J)reselltation:
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the “pseuclo-graclimlt”  with respect to w~,

To get the pseudo-gradient. ~, pseudo-gradients ~ for all t, k need to be calculated

forward in time at each time step~’
t]

(2)

(Initially, set: ~ = O, b’i, j,n,k.)
lJ

In carrying out the chain rule for the gradient we replace the real gradient ~~~, which
t]

- t - 1

is zero almost everywhere, by the pseudo-gradient ~. The justification of tile  usc of the

pseudo-gradient is as follows: sl]ppose  wc are standi~~g  011 one  side of the ha rd  th resho ld

function S(x), at point XO >0, and we wish to go downhill. ‘1’l]c real gradient ot’ .$’(x)  would

not give any information since it is zero

function f(z), which is positive at XO and

direction is to decrease Zo, which is also

the gradient tells us how C1OSC we are to

at XO. If instead we look at the gradient  of the

increases as X. --i O, it indicates that the downhill

t h e  case  in S(x). 11] acldition,  t h e  lnagnitucle  of

a step down in ,5(.T). Therefore, we can  use that

gradient as a heuristic hint to indicate which direction and how close a step down would be,

This heuristic hint is what we usc as tile  }Jsc~l(lo-gra(licllt  ill our gr~dic[lt  update  calc~llation

in Equation (2)

4 Experimental Results on Learning Regular Gram-
mars

A regular language can be defined as the Iangllage  acccpte(l hy its corresponding finite state

acceptor: < E, T, to, 6, J’ >, where

● Z is the input alphabet.

● T is a finite nonempty  set  of st, at(v+.

● tO is the start (or initial) state, all f:lcl]l(:llt  01’7’.

● & is the state transitioxl  funct,ioll;  6 : ‘f’ x Y -+ ‘f’.

. f{’ is the set of flrla]  (or accept il~g)  stal,(~s,  a (I)ossil)ly tflll)l,y)  sllt)s(’t  of ‘/’.

(i
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The following grammars were used in the learning experiments dcscribccl  in this section:

●

✎

●

●

Tomita grammars [14]:

o #1 — 1“.

o#4— any string  not containing “000” as a substring.

o #5 —- an even number of O’s and an even number of 1 ‘s.

o #7 — 0“1”()”1”0

Simple vending machine [1]: ‘The machine takes in 3 types of coins: nickels, dimes

and quarters. Starting from empty, a string of coins is entered into the machine. The

machine “accepts “, i.e., a candy bar may be selected, only if the total amount of money

entered exceeds 30 cents.

A 10-state machine shown in Fig. 6(b).

A training set consists of randomly chosen variable length strings with length  uniformly

distributed between 1 and ~~a~, where l.v,a~ is the maximum training string length. Rich

string is marked as “legal” or “illegal” according to the underlying grammar.

Table 1 shows the experimental results of training the discrete recurrent network by the

pseudo-gradient learning method on these gyarn]nars. An epoc}l is olle presentation of tile

whole training set to the network. ‘1’llc total nunlber  of characters processed is the cunlulative

count of all characters in all strings presented to tile  network in all L1’ilir]il]g  CI)OCIIS.

As a typical example, Fig. 4(a),(h),(c) show the ho – 1/3 activation-space records of the

learning process of a discretized  network (h values  arc the undiscretizccl valLIcs  from the

sigmoids).  ‘1’he underlying grammar is again the ‘1’ornitd GramIIlar #l. ‘1’llc paralncters  of

the network and the training set are as listed in ‘J’able 1.

Fig. 4(c) is a run on an unlabeleci  test strillg set after learning, where the weights are

fixed. Notice that there are only a finite number of points in the final plot ill the analog

activation h-space due to the discretization. Fig. 4(d) shows the discretizcd  value plot in

SO – S3, where only 3 points can bc seen. Each point in the discretizcd  activation ,$-space

is automatically defined as a distinct state and no point is shared by any of the states. The

transition rules are calculated by setting the S’:-l uni ts  equal  to  oIle state, tl~ml  apl)lying

an input bit (O or 1 in the binary alphabet case) and calculat,  illg tllc  values of the ,$~ units.

‘1’his  value corresponds to a point  irl S’-space and fjhus is tlie  ]Iexil state given tl)at,  particular

input. An internal  s tate machine ill tile  llctwork  is thus collstruclml. IJor this example, 6

points are found in S-space, so a 6-stitte-I~lt~cllir~(:  is co[~str~lcted as shown  ill P’ig. 5(a). Not

surprisingly this machine reduces by Moore’s algoritll!l)  to all equivalent Ininill]llnl  lnachine

7
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with 4 states which is exactly the Tomita  (lrammar #4 (1+’ig. 5(b)). Similar results were

observed for all the other grammars in the experiments.

Fig. 6(a) shows the extracted automaton from the network trained on the grammar for

the 10-state machine. Again, Moore’s algorithm reduces this 15-state automaton to the

correct 10-state machine shown in Fig. 6(b).

5 Discrete Recurrent Networks with External Stacks

Regular grammars are the simplest type of grammar in the Chomsky language hierarchy[9],

and have a one-to-one correspondence with finite state machines. SO a network that can

represent any finite state machine is sufllcient for representing regular grammars. ‘1’he next

class of grammars in the hierarchy are called context-free or type 2 gra)nmars. ‘l~hcy  represent

a much wider class of languages than CIO regular grammars --- finite state machines are not

sufficient enough to represent all such grammars.

The theory of finite automata and forma]  languages states that there exists a one-to-

one correspondence between context-free languages and pushdown automata. ‘1’}lat is, one

needs to have an external stack to operate on besides the finite state nlacllil}c in ordel

to represent context-free grammars. By training the network to hchave like a pushdown

automaton we equivalently obtain a finite-state machine with an external stack that accepts

the corresponding context-free grammar.

As in [3], we restrict the scope of colltext-lrec gratmIlars  I)y t}lc following: tll(~ alpl]ab(~t of

the stack symbol is set to be the same as tllc  input  alpllabct,  o]]ly tllc currellt  ilip~lt, sytnbol

can be pushed onto the stack, and epsilon transitions (wrhich can lIlakc state transitions or

stack actions without reading in a I]cw il~pllt  synlbol)  arc not, allowwl.

Shown  in Fig. 7 is the structure of a discrcLc rccllrrcrlL IICLWOrk wilil  aIl cxt(’r]lal  stack for

the case of binary input and stack syInbols. ‘1’hc prilllary  diff’erwccs  Ix:twccll  L]lis  s t r u c t u r e

ancl the one proposed in [3] arc that wc have a discrete stack ZLS well as discrctized  units.

In Fig. 7 we have in effect four’ I sL-order’  networks with shared hi(idcn  ullits.  [n addition

to the input symbol which acts as control to cllable or disable netO or netl, the current

top-of-stack symbol also acts as a second gati]lg  control which enahlcs  or clisahlcs  net2 or

net3. Note that if the stack is empty, then Imth  net2 and net3 arc disablc(l,  a situation

that  does not happen to the netO- netl l)air.

As before, the unit ho is de~illrxl  Lo lx’ 11)(I  “i]l(licator” llllit,,  tvl]osc activ:ltlioll s} IoI[ld he

greater than ().5 at the end of a legal sLrillg ail(!  slnallcr  ti)a]l ().5 ot]lcrwisc.  ‘1’!)r last uni t ,

in this case h2, is singled out to be the “act,ioll” llllit,  whose activation clccidcs what stack

actioll  to take,  IIowcver,  tllc va lue  of L\lis a c t i v a t i o n  (Io(’s [lot got (wl)i(d  lMck h) the Ilcxt
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time step. If h 2 is greater than a certain value (for the experiments reported here it is set

to 0.6) then the current input symbol is pushed to the stack. If it is smaller than a certain

value (0.4 in our case), then a symbol is popped out of the stack. Otherwise no action is.  .
taken.

The activation functions of the h units and the discretization function of the S units are

the same as defined in Section 2.

The error functions for training networks with stacks to learn context-free grammars are

more complicated than for the simple grammars discussed in Section 4. Several situations

can be encountered during learning, each requiring the use of a different error fu]lction.  We

start by basing our error functions on those proposed in [3], but there are some significant

differences.

Let ho, hi,..., hN be the hidden units of the network, where hO is the “indicator” unit and

hN is the “action” unit. Assume the current string being processed is To, Z1, . . . . x~’, where ~

is the string length, and let d~ denote the depth of the stack at time step t. The di f fe ren t

error

●

●

●

functions are as follows:

If the string is legal and the end of string is reached (without any attempt to pop an

empty stack),

E = ;((1 – h$)z + (CF)2). (3)

This means that for

stack to be empty.

If the string is illegal

empty stack),

legal  s tr ings we want both the indicator  llllit to be 0]1 afltl  tl]c

and the cncl of string is reached (without any  attempt to pop an

{

hL–dL  ifh~–dl’>O
E= 00

otherwise.
(4)

This means that for illegal strings we want either the stack to be nonmnpty,  or the

indicator unit to be off.

If the network attempts to pop an empty stack at time step 1,

]< =
{

~(1 - h~)2 – dt if tllc  string is legal
o if tile  string  is illegal. (.5)

This means that for legal strings we warlt to correct the error ol’ atternpti]]g  to pop an

empty stack by forcing the action unit vt]llle  away frolll O, i.e., avoid  t,tle “pop st:lck”
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action and at the same time encourage the stack to become nonempty.  On the other

hand, for illegal strings, we do nothing because the attempt to pop an empty stack is

considered an indication that the string is illegal..

Das et al have suggested in [3] that by providing the network with a ‘(teacher” or all
“oracle” to give hints, the learning can be sped up significantly. ‘1’he teacher or oracle works

as follows: there are certain illegal strings which are not prefixes to any legal strings, i.e.,

any symbols that follow such strings do not  provide any further information. Henceforth,

wc will call these strings dead strings. The teacher is assumed to have the ability to identify

such strings. Whenever a point is reached in the input string such that no further processing

of the remaining string is necessary,  the teacher  proc~uces a skna]  and the kWI@ iS hELltec~”

The network is then trained to have another special hidden unit, designated as the “dead

unit”, turn on. After the network has been trained in this way, a string  is considered to be

classified as illegal whenever the clead unit is turned on during testing. ‘1’hc error functions

have to be modified accordingly.

We found that it is not sufficient to add an error function only for the deacl strings and

to keep the other error functions (3)-(5) the same. l’or strings other than the dead strings,

the network needs to be trained to have the dead unit tur]l off to avoid confusion. More

specifically, letting hj be the dead unit,  we have:

● If the string is legal  and the end of string is reached ( Ivitho{lt ally att(!nlpt  to pop all

empty stack),

E = ;((1 – IL:)2 + (dqz + (hf)z),

i.e., wc want the indicator unit to bc 01], (lie stack to 1)(! eml)(y  a71d Ihc dead  unit. to

● If the string is illegal but not a dcacl string, and the eIld of st ring  is reached (without

any attempt to pop an empty stack),

{

h; – dl’ + ~hf if h; – d[’ > 0
E= ~

othcrlvisc,

i.e., wc want either the stack to hc IIoll(’lnpty, or the indica(or  llnit  to Ix: ofT, and Jor

both cases ,  the  dead unil lo 6C ~~jf. ‘1’lle dead ll]lit  slIoIIld  IIOt bc 011 for s[lc!l  stri]lgs

because they could be prefixes to certai]l legal strings.

I ()
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If the string up to time step t is a dead string,

E=
{

~((1 – h~)2 + (h&)2) if stack is empty
;(I -  h:)2 if stack is nonempty,

This means we want the dead unit to turn on and either fhe indicator  uni~ to t~Lrn O]

or the stack to be nonempty.

If the dead unit turns on at time step t before any possible signal for a clcad string,

E = ;(h:)2.

We do not want the dead unit to turn on too early since the string up  to thus poini

could still be a prefix to certain legal strings.

If the network attempts to pop an empty stack at time step L, before any possible

signal for a dead string,

{

~(1 – h~)2 – d’ if the string is legal
E= ;

if the string is illegal.

Here we do not try to force the dead unit  to turn on or off because it l]as bm!n behaving,

as desired so far.

As in Section 3, for the case with non-stack networks, the pseudo-gradient method is

again used for training. The pseudo-gradients of’ error functiolls  ill weight  space conccm]

bo th  ~ for all t, k,n, i,~, and ~ for all t,n,ilj. ‘J’he forlner  is calculated the sanle  way
~1 t]

as before. To calculate the latter, i.e., the l>sei~cl{>-gri~cliel]t,  of the tiel)tll  of the stack: we use

the iterative operational equation:

dt = CLt-’ + Dl(h~), W h e r e  Dl(:c)  =

Initially, set * = O for all n, i,j.

After each tim~step,  update:

1 if’ z >0.1
-1 if x < 0 . 6
0  othcrlvise.

Here, in place of the gradient of the piece-wise step function f~l, ~vc still  use the pscudo-

gradicnt  of the action unit hN. Altl]ougll  tllc wduc  of the actio[l  ul]iL dots [lot get discretized

and copied back after each time step, its l~s(:ll(lo-gr;~(li(:llt  call still 1)(’ ralc~llatml  by utilizil]g

the pseudo-gradients of other hidden units:



6 Experimental Results on Learning Context-Free Gram-
mars

We’experimented with the same grammars as in [3], i.e.,

● The parenthesis matching grammar.

● The postfix grammar.

●  anbn.

●  am+nb’’’cn.

● an bncbnLa7n.

As in [3], a training set consists of all stri]lgs  up to a certain lcllgthl  wit]) rcpeate(i  legal

strings so that there are about half as mal)y  legal strings  as iilcgal  ot]es.

Table 2(a) and (b) show the detailed results for experiments witil  and  witi)out hints,

respectively. The numbers in each row arc averages over tllc  successful I’UIIS (out of 10

possible successful runs) with different initiai  conditions --- a successfld  run is taken to mean

that the network generalizes perfectly for ail string lengths. ‘1’he numix:r  of ovcrfit,ting  runs

indicates the number of times in the 10 runs Lllat  the network ovf’rfits tllc  dt\t:L hy usi]lg

too many internal states and did  not gellcralizc. ‘1’11(3  lluIllbcr  01” lloll-collv(:t’g(:ll~”  l’LIJIS is the

number of times in the 10 runs that the training  had not  collvergcci after 1000 epochs and

was halted. Note that the number of unsucccssfu]  rll]ls  are significantly fc\vcr [or the case

with hints than without hints — hence, hints generally ilnprove  the reliability O( the learning

procedure. It is still an open question as to how to avoi(i ovcrfitt,  illg in general l)y (olltrolling

the size of the derived automaton during I(!arlliug. It should be note[i  llo~vcvcr tl)at the tile

networks did not overfit the data when hi~lts  were  providc(i.

The hidden unit sizes and training set sizes shown in Table 2(zL) and (b) are tile minimum

sizes for which generalization could be obtaincxi  for each probiem  - cxpcrilllcIlls  llsing either

less training data or fewer hidden units invariably rcsulte(i  in less than perfect gcllcraiization.

As an example, Fig. 8(a) and (b) show Lhc (icrivt-!d  pusildown  autolilata  I’ro]n tl]e networks

after being trained on the parenthesis rnatcllillg  graInnIar and the a“b” grwl]  t nar rcspcctiveiy.

As before,  each state corresponds to onc  sillglc  point, itl the ]Ietworli’s  hi(icicll IIllit  activa-

tion space  an(i tlw t r ans i t ion  ru le s  a rc  ticrivc(i  sil]lilariy:  set  tlil(: ,\’J  - 1 Il[lil,s  10 (Iacl]  of t h e

points(states)  in the activation spt~cc, giv(:  th(: tlctwork  di(rercl]tl  (:ol)lt)illt~t,iolls”  01’ itlpllt  anti

top-of-stacif  controls ,  anti  thus calculate  t]l(} Ilcxt, stat(>  givcll s{l(:il  i[ll)ilt  aI)(i sta(k  corl(iitiorls.



Note that for the parenthesis matching gramlmar, the network finds a pushdown automa-

ton that has one single state. Start ing from an empty stack, when the inpLlt is a “(”, it
pushes this input onto the stack. When the input is a “)”, it either  POPS a “(” from the

stack if the top-of-stack is a “(”, or pushes the “)” onto the stack otherwise. ~’l)us,  whenever

there are more “)”’s than “(” ‘s, the machine executes a “push stack” operation no matter

what the input symbol is, making the stack nonempty (indicating aIl illegal string) from this

point on.

Using a discrete network as well as a discrete stack results in tile advantages of a stable

network, and a clear understanding of the operation of the stack. in [3], where a continuous

stack was used, the results show that the trainecl  networks do not always generalize perfectly.

From the results in Table 2, it can bc seen that providing the network with hints can

indeed speed up learning, or even enable the learning of the grammars in cases  where the

grammar could not be learned without hints . However, unlike [3], we did not fincl incremental

presentation of the training data helped in improving the learning, Illcrcmcnta]  presentation

means that the network is initially given a small data set consisti]lg  of only  short  strings.

After it has learned the current data set, more strings longer in Icngth  are added to the

training set until all training strings are lcarnecl. We found in our experiments that once

the network finds a configuration to fit the small data set with snort strings, it is sometimes

very hard to drag it away from that configuration to a clesirml configuratio]l  that will fit the

later (longer) strings as well. “1711e training tillles  with alld  witho~lt  incrcme[lta]  IJrcsclltation

of strings are comparable in our cxperimcrlts. ‘1’hc l)umbers  listc(l in ‘1’able 2(a) a[ld (h) arc

of runs with the training data set presc]lt,cd  to tllc  network all al otl(’(:.

We postulate that the reason why incrcmlcmtal  Iemling worlml for alialog  llctworks but

not for discrete networks is due to the nature of analog and discrete  net~vorli~.  ‘1’hc analog

network always finds a “soft” solution to a data sctj, which oIlly has clear decisio[ls  for snort

strings, but is vague on long strings. ‘1’hLIs it is easy for it to ‘Lhardcll” such a solulio[~  when

more restrictions about longer strings are en f’orccd. ‘J’hc result  is a soiuliorl  lvllose “llardllcss”

or decisiveness depends on the maxinluln  length of the training strings.  011 lI](!  other hand.

the discrete network always finds  a “hard” solution to a data sell  wl)ich has clear decisions

for strings of any length. once it settles in such a solution it is hard to ell[orce  restrictions

about longer strings which contradict the ctirre]]t  solution. So O1]C lllay as well provide all

the restrictions to the network at once. As long as Lllcrc exists s~lf[ici(~[lt  irlli)rlllalioll  in L1lC

data set, the resulting solution does  Ilot dcpet]d  011 tile  nlaxill~~llll  Ic]lgt,ll  01’ training  strings,



.,,
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7 D i s c u s s i o n

The primary advantages of introducing ciiscretization  into recurrent networks can be surn-

- lnarizcd  as follows:

1.

2.

3.

A

Once the network has successfully learned a state machine from the training set, it’s

internal states are stable. The network will always classify input strings correctly,

independent of the lengths of these strings.

No manual clustering (as in [8]) is required to extract  the state machine explicitly,

since instead of using “cluster clouds” as its state representation, the network fornls

distinct, isolated points as states. Each point in activatioll  space is a distinct state

and, hence, the trained network behaves e~actly  like a state ~nachine.

In terms of implementation the discretizcd  recurrent ~letwork is easier to implement in

hardware particularly when an external stack is used.

reasonable question is, given that the training method for L1)C discretized  networks does

not use a proper gradient descent algorithm, dots it take longer  to train ? It should be noted

that convergence on the training data set has a different Inea]ling  in the case  of discretizecl

networks as opposed to the case of analog lletworks. In tile analog case, learnillg is considered

to have converged when the error for each sample  is below a ccrtaili crmr 101 CIY(7LCX lCVC1. In

the case of disc, retized networks, however, learllirrg  is only s(.opl)(:d  an(l rollsidered  to nave

converged when zero  error is obtairled  011 all salnples  irl tllc  traillillg set .  Itl t,llv  cxl)erirncrlts

reported in this paper the analog tolcrallce  level was set to 0.2. ‘1’llc discrclized  llct~vorks

took on average 30% longer to train in terms of lcarllillg  epochs coInpare(i  to the analog

networks for this specific error tolerance level llowet’rrt as point(’d  t)ut a]rea{ly, this meant

perfect training set memorization and test set genera] izatiorl  for t Ilc (Iiscr(:tizc(l  nct~vork,

whereas the analog network was often ullstablc  for ]otlg strings.

8 Conclusion

ln this paper we introduced discrete recurrent networks as ~L solution  to stal)ility  problems

with analog networks in learning regular :LL)(] context.  fN:c gr:lm ll)alx.

As opposecl  to analog networks, which forll~ “cl~lster Cloll[ls;’  ill activation space to rep-

rcsmt discrete states, the state rc}>r(:s(:[ltt~t,iol)  ol OIIr discrci,c  Il(:tlvorks  consists 01’ distinct.

isolated points in activation space, and is stal)ltI regar(ll(xss  01 string Ie!lgtll.

‘1’o train such discrete networks, we l)r(!s~~llt  a l)s(:ll(l(J-glacli(~rll Icarrlitlg  ln{’tllo(l.  ‘1’llc

method is heuristically plausible all(l  (:xl>(:rilll(~llt,i~l  r(:s~llts  sllo~v tll:~.t  tllv Il{Itworl< l~as sill~ilar

II



capabilities in learning regular and context-free grammars as

net work.

~’he proposed pseudo-gradient lcar-ni]lg  methocl  suggests a-..
networks with threshold activation ‘functions.
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training set #  Oj mean mean #
grammar # o f hidden #  Oj cJ of oj total

. . . strings rlmax units epochs epochs characters
Tomita #1 50 5 4 36.4 33.4 5205
Tomita #4 100 8 4 76.6 ~7.o 31712
Tomita #5 100 8 4 64.4 20.7 26662
Tomita #7 100 10 4 138.5 31.1 70774

Vending machine 365 6 5 231.8 22.4 383165
10-state machine 317 12 8 5798 - - 14315262

Table 1: Experimental results from training the discrete recurrent network on regular gram-
mars .  L~@z is the maximum length of training strings. The numbers for epochs and total
characters processed during learning are the average numbers over 5 runs with different
random weight initializations, except for the 10-state machine, for which only one run was
obtained. u is the standard deviation of the epochs over the 5 runs. All runs have perfect
generalization performance, i.e., 100’70 correct on strings of any length.



training set #  of mean mean #
grammar # of hidden N,t No N, # of o of of total

. . strings LV,.Z units epochs epoc}w characters
Parenthesis 46 6 3 0 0 10 28.8 16.3 5205

Postfix 63 7 4 1 0 9 62.3 17.1 21131

anbri 32 6 4 2 II 8 127’.3 4.9 16797
am f”bmcn 120 8 5 2 0 8 63 36.0 7560
an bncbmam 150 7 7 1 698 516520

training set # of
grammar # o f hidden

strings Lm~z units
Parenthesis 180 6 3

Postfix 371 7 4
anbn 760 s 5

(a)

N.

o
4

(b)

TNo N,

o 10

Table 2: Experimental results from trai]]ing  the discrete rccurre]lt  network  on contest-free
grammars (a) with hints; (b) without hi]lts. T i le  trainil)g  set and hidclcll unit c o l u m n s
indicate the fixed  learning parameters for each gralnlnar. 10 runs with difrerent  random
initial weights were carried out for each gralnmar  except for L1lC a’L/$Lcll’LanL  granl  Inar in (a)
and a?’bn  in (b), for which only one run each  was obfained.  I\r.,, tllc  Ilurnt)er  of successful
runs is the number of runs (of’ the 10 possible) for wllicll the trained network gellcralizecl
perfectly for strings of any length. The rncmls  for the epochs and total characters processed
(and the standard deviation for the epocl~s) were estimated only  from the successful runs,
fVO, the number of overfitting  runs is the nunlber  wh(!rc the Ilel\vLrk ovcrfittcd  111(’  data  and
did not generalize perfectly. N,,,  the number of nol~-convergent N1[ls is the nun]t)er of rulls
where the network did not converge on the! training data after 1000 epochs.
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Figure 1: An analog second-orcler  network. Each square  unit takes the product of its two
inputs as its output. When the current input is 1, input unit “0” has value O, and input unit
“l” has value 1, and vice versa, l’hc thick circled unit  is the intlicator  unit,  W11OSC desired
value is close to 1 when the input is legal and close to O wlicn  tll(! input  is ill[!gal.



. .

4L ~0.00 %20 0.40 O,w 0.s0 1.00

(a)

so

0.s0

II
..!+, .

*L ““’-
., , %%,.<.:.:.%

O.m .
“~. . .

= T\
. .

0.40
\

0.20

t
o.~ L , . . . . . . . . . . ,-.-— ,___-L-l

0.00 0.20 0.40 O.al O.sfl 1 m

(b)

so

:1 -“”;l :1.. -...-.. .-.-ii
Omriik-aitil  ,)0 ‘0 0.00 0,20 04Ao.@ 0.s0 1.03 ‘0

(d) (e)

S3
Imp-–”  “-T–—-’-—

tx.j~:%m$
. . . ..:&”  . .

0,s0 w..’”.::”  .., . . . ., . .
Ofa -

. .

-,– ..–,—.-

. .

c’q  , ___ .,. ._ J__.,.. . . . . . . ..-~

0.03 0,20 0.40 0,60 Owl lSMI ‘0

(c)

S3

b%

1.02 ‘— ‘-—–’ ‘ - ‘ --r-– “““ ——
b+

0.s0

\

------- -. . .
. . . . . . . . . .

().63

r
. +% ‘;’”’l

y:,,
MO; ..- “ . . .Y.

1

..,., %;,
‘ ,~ ., .

0.20 +ai\

O.m / , \

o,(x) 0.;0 --iii O.ko ().io “““J ‘0

(f)

Figure  2: Hidden unit activation plot SO – S3 in learning I’omits grammar #4 (SO is the
z axis). (a)-(e) are plots of all activations on the training data set: (a)during  1st epoch of
training, (b)cluring  16th epoch of training, (c)during 21st epoch of training, (cl)during  31st
epoch of training, (e) after 52 epochs, training succccds, weights arc fixed,  (f) after training,

when tested on a set of maximum length 50.

‘)()



. .

I
I
I
I

i
I
I
I
I
I
I
I
i
I

:
I
I
I
I
I

i
I
1- -.

r---- ---- ---- ---- ---- 7
I—--- ----~--___________.__i

copy
L_._.__ . . . . . . . . . . . . . . . . . . . . ._ —[ COPY

L“copy I ------ _______ . . . !_—

I II L— ----- ______ .._ —.

enable I I enable- - - - -  - - - - -  -——.1 L - - - - - —  ——-— —-- -
neto”

J
\ \ / /

/’ Iletl

‘“0
/, /

Y--.,.>p.., s . . ,,/’’”
“\/”

f
I input
I stream

Figure 3: A discretized  second-order network. ‘1’he thick circled IIllit h~ is the illclicator  unit:
hi >0,5 for legal strings and S: <0.5 for illegal strings.



0.80

0.60
I

0.40

0.20

1

WL-——L_.. ~
0.00 0.20 0.40 0.60 0.80 –I&-l ‘0

(a)

h3
l.oor

0.80 -

O.GO

0.40 -

0.20 -

0.00 -
L.  1.. ..–1–– - . . l . . — – -  — . .
0.00 0.20 0.40 0.60 0.80

–JL ho
1.00

(b)

S3_–—–T..-.-– , -––—-r
I.oot

t
t

0.80
I

O.(W F

:1: ““”l
4Ll_---:l-l

O.(XI 0.20 0.40 0.60 0.80 1,00 ‘0

(c)

0.40
1

O,y.)

0.00 I
o.w-

1–- ..L—l— 1.
0.20 0.40 0.60 0.80

(cl)

‘-’-”1
-i

~Iiioso

l?igure4:  I)iscretized  network learning Tomitagrammar  #4: (a) /~o–h3d~]ri]lglstepochfJf
training, (b) ho – /23 during 15th epoch of training, (c) ho – }1.3 after 27 cpoclls  tvhcIl  training

succeeds, weights are fixed, (d) So — S3, the discretized copy of hu — h3 in (c).



. .

1

s

(a)

1 0,1

(b)

Figure 5: Extracted state machine from the discrctized  network after lcarnillg Tomiia gram-
mar #4 (a double circle means “accept” state, a single circle means “reject” state): (a)

6-state machine extracted directly from the discrete activation space. (b) equivalent mini-
mal machine from (a).
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after learning (a) the parenthesis grammar without hints; (b)  the grammar a’~bn with hints.
Double circled means the state has an indicator unit on, SO = 0.8: thus a processed string

is legal if the automaton arrives at such a state and if the stack is empty. A dead state
means the state has its dead unit  on, S’l = 0.8: a prorxssed  string is illegal as soot] as the
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